Kategorien
Konto
Anmelden / Registrieren
Warenkorb
 
 

Data Science and Predictive Analytics


Menge:  Stück  
Produktinformationen
cover
cover
Artikel-Nr.:
     5667A-9783319723464
Hersteller:
     Springer Verlag
Herst.-Nr.:
     9783319723464
EAN/GTIN:
     9783319723464
Suchbegriffe:
Bücher für Datenbanken - englischsp...
Datenbanken (Fachbücher)
Datenbankenbücher
Netzwerk (Fachbücher)
Over the past decade, Big Data have become ubiquitous in all economic sectors, scientific disciplines, and human activities. They have led to striking technological advances, affecting all human experiences. Our ability to manage, understand, interrogate, and interpret such extremely large, multisource, heterogeneous, incomplete, multiscale, and incongruent data has not kept pace with the rapid increase of the volume, complexity and proliferation of the deluge of digital information. There are three reasons for this shortfall. First, the volume of data is increasing much faster than the corresponding rise of our computational processing power (Kryder's law > Moore's law). Second, traditional discipline-bounds inhibit expeditious progress. Third, our education and training activities have fallen behind the accelerated trend of scientific, information, and communication advances. There are very few rigorous instructional resources, interactive learning materials, and dynamic training environments that support active data science learning. The textbook balances the mathematical foundations with dexterous demonstrations and examples of data, tools, modules and workflows that serve as pillars for the urgently needed bridge to close that supply and demand predictive analytic skills gap. o To improve the return on investment for their shareholders, a healthcare manufacturer needs to forecast the demand for their product subject to environmental, demographic, economic, and bio-social sentiment data (Big Data). The organization's data-analytics team is tasked with developing a protocol that identifies, aggregates, harmonizes, models and analyzes these heterogeneous data elements to generate a trend forecast. This system needs to provide an automated, adaptive, scalable, and reliable prediction of the optimal investment, e.g., R&D allocation, that maximizes the company's bottom line. A reader that complete a course of study using this textbook will be able to ingest the observed structured and unstructured data, mathematically represent the data as a computable object, apply appropriate model-based and model-free prediction techniques. The results of these techniques may be used to forecast the expected relation between the company's investment, product supply, general demand of healthcare (providers and patients), and estimate the return on initial investments.
Weitere Informationen:
Author:
Ivo D. Dinov
Verlag:
Springer International Publishing
Sprache:
eng
Weitere Suchbegriffe: Netzwerkbücher, Netzwerkbücher - englischsprachig, datenbanken (fachbücher), big data, R, statistical computing, predictive analytics, data science, health analytics, machine learning, statistical learning in R, hands-on machine learning, Big Data methods, data management
Die Konditionen im Überblick1
Lieferzeit
Lagerstand
Preis
€ 79,99*
Konditionen selbst auswählen
Artikel empfehlenArtikel merken
* Preise mit Sternchen sind Nettopreise zzgl. gesetzlich gültiger MwSt.
UVP bedeutet „Unverbindliche Preisempfehlung“
Unser Angebot richtet sich ausschließlich an Unternehmen, Gewerbetreibende und Freiberufler.