|  |
 |
| Artikel-Nr.: 5667A-9783642699672 Herst.-Nr.: 9783642699672 EAN/GTIN: 9783642699672 |
| |
|
|  |  |
 | Prerequisites and Notation.- 1: Basic Concepts of Computability.- 1.1 Flowcharts and Machines.- 1.2 Register Machines and Register Computability.- 1.3 Primitive Recursive and ?-Recursive Functions.- 1.4 WHILE-Programs and WHILE-Computability.- 1.5 Tape Machines.- 1.6 Stack Machines.- 1.7 Comparison of Number and Word Functions, Church's Thesis.- 1.8 Recursive and Recursively Enumerable Sets.- 1.9 The Standard Numbering ? of P(1).- 1.10 Some Unsolvable Problems.- 2: Type 1 Recursion Theory.- 2.1 The Basic Concepts of Computability Theory.- 2.2 Numberings.- 2.3 Recursive and Recursively Enumerable Sets (Continued).- 2.4 Many-one and One-one Reducibility.- 2.5 The Recursion Theorem.- 2.6 Creative, Productive, Complete Sets.- 2.7 Effective Numberings.- 2.8 Ordinal Trees and Computable Ordinals.- 2.9 Some Applications to Logic.- 2.10 Oracle Machines and Relativized Recursion Theory.- 2.11 Turing Reducibility and the Kleene Hierarchy.- 2.12 Computational Complexity.- 3: Type 2 Theory of Constructivity and Computability.- 3.1 Type 2 Computability Models.- 3.2 Recursion Theory on Baire's Space.- 3.3 Representations.- 3.4 Effective Representations.- 3.5 Complete Partial Orders.- 3.6 Type 1 Computability and Type 2 Computability.- 3.7 Solving Domain Equations.- 3.8 Applications to Analysis.- Index of Notations. Weitere Informationen:  |  | Author: | Klaus Weihrauch | Verlag: | Springer Berlin | Sprache: | eng |
|
|  |  |
 | |  |  |
 | Weitere Suchbegriffe: allgemeine Informatikbücher - englischsprachig, allgemeine informatikbücher - englischsprachig, Algorithm analysis and problem complexity; Notation; complexity; computability; computability theory; computational complexity; logic; turing degree, Notation, complexity, computability, computability theory, computational complexity, logic, turing degree, algorithm analysis and problem complexity |
|  |  |
| |