|  |
 |
| Artikel-Nr.: 5667A-9783030632755 Herst.-Nr.: 9783030632755 EAN/GTIN: 9783030632755 |
| |
|
|  |  |
 | This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of "quenching", i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts. Weitere Informationen:  |  | Author: | Idoia Cortes Garcia | Verlag: | Springer International Publishing | Sprache: | eng |
|
|  |  |
 | |  |  |
 | Weitere Suchbegriffe: allgemeine technikbücher - englischsprachig, Nonlinear Circuit Models, Simulation of Superconducting Magnets, Differential Algebraic Equations(DAEs), DAE Index of Field Circuit Coupled Systems, Optimised Schwarz Waveform Relaxation, Parareal for DAEs, Electroquasistatic Models, Waveform Relaxation Method, Quench Protection System, Space Discretization, Time Discretization |
|  |  |
| |