|  |
 |
| Artikel-Nr.: 5667A-9783540100621 Herst.-Nr.: 9783540100621 EAN/GTIN: 9783540100621 |
| |
|
|  |  |
 | I. Elementare Vektor- und Tensoranalysis.- §1. Einige Sätze aus der Vektoralgebra.- §2. Gradient, Divergenz und Rotation.- §3. Integralsätze.- §4. Wirbel und Quellen.- §5. Vektorkomponenten in Kugelkoordinaten.- §6. Elementare Theorie der Tensoren.- Aufgaben 1-20 zu Kapitel I.- II. Riemannsche Geometrie.- §1. Vektoralgebra, Transformationsformeln.- §2. Tensoren.- §3. Vektoranalysis.- §4. Integrabilität und Krümmungstensor.- §5. Eigenschaften des metrischen Tensors und des Krümmungstensors.- §6. Variationsprinzip.- §7. Orthogonale Koordinatensysteme.- Aufgaben 1-23 zu Kapitel II.- III. Algebraische Hilfsmittel der Physik.- §1. Grundbegriffe.- §2. Endliche Gruppen.- §3. Permutation dreier Objekte als Beispiel.- §4. Quaternionen und Spinoren.- §5. Spintheorie.- §6. Verallgemeinerungen der Gruppe SU2.- §7. Höherdimensionale Darstellungen der SU3.- Aufgaben 1-11 zu Kapitel III. Weitere Informationen:  |  | Author: | Siegfried Flügge | Verlag: | Springer Berlin | Sprache: | ger |
|
|  |  |
 | |  |  |
 | Weitere Suchbegriffe: Algebra; Geometrie; Physik; Riemannsche Geometrie; Tensoranalysis; Vektoranalysis, Algebra, Geometrie, Physik, Riemannsche Geometrie, Tensoranalysis, Vektoranalysis |
|  |  |
| |